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Curves

Definition
A plane algebraic curve is defined as the set of points in a plane
consisting of the zeroes of some polynomial in two variables.
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A plane algebraic curve is defined as the set of points in a plane
consisting of the zeroes of some polynomial in two variables.

Example
x? 4+ y? =1 over R?:
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Consider points with integer coordinates modulo a prime.
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Consider points with integer coordinates modulo a prime.
Definition

[F,, is the set of elements that consist of the integers modulo a
prime p.

Remark

If you know what a field is, we are looking at plane algebraic
curves over the finite field IFp.



Curves

Consider points with integer coordinates modulo a prime.

Definition
[F,, is the set of elements that consist of the integers modulo a
prime p.

Remark
If you know what a field is, we are looking at plane algebraic
curves over the finite field IFp.

Definition
Given a curve C, define C (F,) as the points that satisfy
C (x,y) =0, along with points at infinity.
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> Well-known curves
» Elliptic curves: y? = x3 +ax + b
> Hyperelliptic curves: y? = f (x), where deg (f) > 4
» Superelliptic curves: y™ = f (x)
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Curves

» Well-known curves

» Elliptic curves: y? = x3 +ax + b
> Hyperelliptic curves: y? = f (x), where deg (f) > 4
» Superelliptic curves: y™ = f (x)

» Curve of interest: y™ = ¢;x™ + cpx™y™ (trinomial curve)

\ s m L e
y2 =x°+5 y2 = x3+4+2x+3 (F263) y2 = x34+2x+3 (ongg)
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Main Problem
What is #C (Fp)?
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Theorem (Hasse-Weil bound)

Let C be the curve of interest: y™ = c1x™ + cox™y™. Then,

[#C (Fp) —p— 1] < 2gv/p,

where g is some polynomial function of my, mo, ny, and n;.
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Main Problem
What is #C (Fp)?

Theorem (Hasse-Weil bound)

Let C be the curve of interest: y™ = c1x™ + cox™y™. Then,

[#C (Fp) —p— 1] < 2gv/p,

where g is some polynomial function of my, mo, ny, and n;.

ldea
If p is large, then all we need is #C (Fp) (mod p).



Main Problem

Main Problem
What is #C (Fp)?

» Naive approach: try all values of (x,y) € IE‘I% (very slow)

» Better approach: find #C (F,) (mod p) and use Hasse-Weil
bound (much faster)



Hasse-Witt Matrix

Definition (informal)

Define H (C,O¢) as the set of bivariate polynomials made from
combining certain monomials modulo the equation of the curve.



Hasse-Witt Matrix

Definition (informal)

Define H (C,O¢) as the set of bivariate polynomials made from
combining certain monomials modulo the equation of the curve.

Definition
The Hasse-Witt matrix of a curve C is defined as the matrix

corresponding to the pth power mapping on the vector space
H(C,O¢).



Hasse-Witt Matrix

Theorem
If A is the Hasse-Witt matrix of some curve C over some field I,

#C (Fp) =1 —tr(A) (mod p).

Remark
If pis large, we only need to find tr (A) (mod p).



Hasse-Witt Matrix

Example
Hasse-Witt matrix of y> = x® 4+ 1 over Fy is




Counting Paths Instead of Points

Definition

Let C be a curve of the form y™ = ¢;x™ 4 cpx™y™. Define
S(C) to be the set of lattice points (i, ) such that
i(my—m)+jny <0, im+jn >01<j<m—1andi<-1

Remark
(i,j) corresponds to x'y/ € H1 (C,O¢). The monomials
corresponding to points in S (C) give us a basis for H* (C, O¢).



Counting Paths Instead of Points

Example
S(C)forC:y3—x*—x=0

Remark
(i,j) corresponds to x'y/ € H! (C,O¢). The monomials
corresponding to points in S (C) give us a basis for H* (C, O¢).



Counting Paths Instead of Points

Redefinition
If xPIyPl = .. + auvx'y” + ..., the entry of the Hasse-Witt
matrix in the /,j column and u, v row is a, .
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>S5 (C) = {(_17 1) ) (_1a2) ) (_272)}



Counting Paths Instead of Points

Redefinition
If xPIyPl = .. + auvx'y” + ..., the entry of the Hasse-Witt
matrix in the /,j column and u, v row is a, .

Example
C:y3 =x*+ x, where p =19

) (C) = {(_17 1) ) (_1a2) ) (_272)}

» For (—1,1):
x~19,19 _ ,~19,16,3 _ 19 16 (X4 +x)
_ X—15y16 4 x 18,16
S11,13 | o 1413 | 17 13

= ... 4+16x Ly 4+ ...



—————
Counting Paths Instead of Points

(~19,19)

(~18,16)

Example
C:y3 =x*+ x, where p =19
» For (—1,1):
x 1919 _ ,~19,16,3 _ 19,16 (X +x)
:X—15y16+X 18,16

:X—ll 13+2 —14 13+X_17V13
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Recall that the curve of interest is C : y™ = ¢c1x™ + cox™y™.
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Recall that the curve of interest is C : y™ = ¢c1x™ + cox™y™.

Question

How many paths are there from (pi, pj) to (u, v) if only steps of
(n1,—m1) and (ny, my — my) are allowed?



Counting Paths Instead of Points

Recall that the curve of interest is C : y™ = ¢ x™ + cpx™y™2,

Question

How many paths are there from (pi, pj) to (u, v) if only steps of
(n1,—m1) and (ny, my — my) are allowed?

Answer
Assume there are ky of (n,—m;) and ky of (ny, my — my). Then,

ki + k
the number of paths is ( 1: 2>, where
1

_ (m—m)(pi—u)—na(pj—v) _ m(pj—v)—m(pi—u)
ki = myn1—m1n—mam and ky = myn —min—many




Counting Paths Instead of Points

Example
Number of paths from (—19,19) to (—1,1) using (4, —3) and
(1,-3).

Requires four of (4, —3) and two of (1, —3), so number of paths is

G



Number of Points Modulo p

Diagonal entries of the Hasse-Witt matrix correspond to paths
from (pi, pj) to (i, J).



Number of Points Modulo p

Diagonal entries of the Hasse-Witt matrix correspond to paths
from (pi, pj) to (i, J).
Theorem (Hase-Liu)

If C is the curve y™ = c1x™ + cox™y™,

#C(Fp)=1- Z <k1 k+ k2> e (mod p),
(ieso)

(p=1)(i(m2—m1)—jn>) and ky = _ _(p=1)({m+im)

where kl min—min2—mam min—min2—many’
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» Find 5(C)
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Summary

Steps to computing #C (Fp):
» Find 5(C)

» Compute diagonal entries of Hasse-Witt matrix by finding
number of paths from (pi, pj) to (i, /)

» Use fact that #C (Fp) =1 — tr (A) (mod p)

» Finish with Hasse-Weil bound



Demo

Example
C:y3—x*—x=0, where p =19

> Allowed steps: (4,—3) and (1, —3)



Demo

Example
S(C)for C:y3—x*—x=0
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Demo

Example

C:y3—x4—x:0, where p = 19
> Allowed steps: (4,—3) and (1, —3)
» S (C) = {(_17 1) ) (_la 2) ) (_27 2)}



Demo

Example
Number of paths from (—19,19) to (—1,1) using (4, —3) and
(1,-3).

Requires four of (4, —3) and two of (1, —3), so number of paths is

G



Demo

Example
C:y3—x4—x:0, where p = 19

S(6)={(-1,1),(-1,2),(-2,2)}
> Allowed steps: (4,—3) and (1, —3)

6
» Number of paths from (—19,19) to <4>

12
» Number of paths from (—19,38) to (—1,2): (2)

—_

2
» Number of paths from (—38,38) to (—2,2): <8)



Demo

Example
C:y3—x*—x=0, where p=19

S(6)={(-1,1),(-1,2),(-2,2)}
Allowed steps: (4,—3) and (1,—3)

v

v

6

» Number of paths from (—19,19) <4>
12

» Number of paths from (—19,38) (2)
12

» Number of paths from (—38,38) < )

v

#C(Fp)=1— ((j) + <122> + <182)> = 14 (mod 19)



Demo

Example
C:y3—x*—x=0, where p=19

» To check, use brute force to find number of points directly

» (x,y) € F24 such that y3 — x* — x = 0:
(0,0),(2,8),(2,12),(2,18),(3,2),(3,3),(3,14) ,(8,0) , (12,0),
(14,10),(14,13),(14,15),(18,0) (13 points)



Demo

Example
C:y3—x*—x=0, where p=19

» To check, use brute force to find number of points directly

» (x,y) € F24 such that y3 — x* — x = 0:
(0,0),(2,8),(2,12),(2,18),(3,2),(3,3),(3,14) ,(8,0) , (12,0),
(14,10),(14,13),(14,15),(18,0) (13 points)

» Must include point at infinity, for a total of 14 points (with
multiplicity)



Time Complexity

Definition
Let M (n) = O (nlog nloglog n) be the time needed to multiply
two n-digit numbers.
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Definition
Let M (n) = O (nlog nloglog n) be the time needed to multiply
two n-digit numbers.

Theorem (Fite and Sutherland)

For the curves y®> = x® + ¢ and y? = x” — cx, #C (F}) can be
computed (for certain values of m such that p =1 (mod m) ):

» Probabilistically in O (M (log p) log p)

» Deterministically in O (M (log p) log? plog log p), assuming
generalized Riemann hypothesis

» Deterministically in O (M (Iog3 p) log? p/ loglog p)



Time Complexity

Definition
Let M (n) = O (nlog nloglog n) be the time needed to multiply
two n-digit numbers.

Theorem (Fite and Sutherland)

For the curves y®> = x® + ¢ and y? = x” — cx, #C (F}) can be
computed (for certain values of m such that p =1 (mod m) ):

» Probabilistically in O (M (log p) log p)

» Deterministically in O (M (log p) log? plog log p), assuming
generalized Riemann hypothesis

» Deterministically in O (M (Iog3 p) log? p/ loglog p)

Theorem
The theorem above also holds for curves of the form
Yy = x™ 4 pxMy™,



Future Work

v

Extending approach to more curves

v

Working over different fields
Computing #Jc (Fp)
Applications to cryptography

v

v
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